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1 Introduction

Some empirical findings in ViTs, CNN-based ResNets, and toy ResNets can be found
here: https://docs.google.com/presentation/d/14Nd58PsfPUG3uejcRkKIzKoFiU2W2vFZJsxjD-E8DxY/
edit?usp=sharing.

In my senior thesis project, I will focus on activation plateaus, stable regions in an activation space
of an LLM, in which nudging a vector to a random direction does not make a big change in the final
output of the LLM. The goals of my project are to:

• Replicate activation plateaus in residual networks (ResNets).

• Provide a mathematical framework of activation plateaus.

By approaching these aims, my project could contribute to:

• Increasing the efficiency and controllability of future activation plateau research with toy ResNets.

• Identifying kinds of tasks (e.g., image classification, binary gate approximation, continuous func-
tion approximation) and training settings (e.g., classification, regression, contrastive learning
with SimCLR) causing activation plateaus.

• Enabling theoretical analyses of activation plateaus.

In Section 2, I summarize past findings about activation plateaus. Section 3 introduces my views of
activation plateaus, namely the mechanistic view discussing my speculation that activation plateaus
are reproducible in simple ResNets and mathematical view where I try to define theoretical frame-
works of activation plateaus based on mathematical analysis and dynamical systems, providing an
interesting foundation for future experiments.

2 Related Work

In this section, I provide a list of discoveries about activation plateaus from prior research. Heimer-
sheim and Mendel [2024] defines an activation plateau as a region containing a real activation of
a token, where perturbing the real activation within the region does not affect the down-
stream logit value much. They discovered that when they perturb a real activation in a random
direction, the change in the output logit was smaller than when they perturb it into a semantically
meaningful direction. They hypothesized that plateaus enhance LLMs’ inferential robustness against
random noise in activations or semantic interference caused by superposition. Janiak et al. [2024]
conducted a more thorough analysis and discovered that the boundaries of plateaus become sharper
as the model size and training tokens increase.

Giglemiani et al. [2024] trained a sparse autoencoder [Sharkey et al., 2022] to extract disentangled
features from polysemantic neurons and create new synthetic activations by adding some of the features
with balanced weights. Then they tested the directional sensitivity and plateaus of the synthetic
activations compared to real and random activations. Regarding directional sensitivity, by perturbing
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each real activation toward a synthetic activation vs another real activation, they found that perturbing
the vectors toward synthetic activations creates similar changes in the final logit calculation. Testing
activation plateaus around synthetic vs real activations revealed that real activations enjoy more
pronounced plateaus, indicating their greater robustness against noise.

Shinkle and Heimersheim [2025] interpolated two real activations (A and B) in the activation space
of a layer and recorded the relative distance of each activation induced by an interpolation point to A
at each downstream layer. They discovered that the more MLP and Attention layers the model
has between the interpolation layer and the recording layer, the more pronounced the
plateaus and boundaries become. They also identified that the MLP layers, not attention
layers, primarily contribute to the emergence of boundaries in GPT2.

3 Hypotheses

Based on these research findings, I propose some hypotheses about the functioning and mechanisms
of activation plateaus from different angles.

3.1 Mechanistic view

We know that the number of MLP layers determines the sharpness of plateaus in GPT2. Therefore,
we can speculate that the repeated additions of the MLP layer activations MLPj(xj,MLP ),
which are non-linearly transformed residual streams at each layer, push the residual
stream xj,att toward a nearby real activation. This speculation naturally gives rise to a research
question: Can we create a naturalistic plateau with a ResNet? If this is the case, we can
conduct more controlled experiments in simpler settings than past research on activation plateaus,
which focuses on LLMs.

3.2 Mathematical view

Previous works have not mathematically defined activation plateaus. In this section, I define activation
plateaus analytically. First, a neural network is generally continuous since it is generally differentiable.
For convenience, I assume a neural network f is continuous hereafter unless otherwise specified.

3.2.1 Defining plateaus analytically

We can define a plateau as a set of points in the domain of a neural network to remove the definitional
ambiguity:

Definition 3.1 (Activation plateaus). Let (Rd, d) and (Rc, d) be metric spaces. Given a neural
network f : Rd → Rc, an activation plateau of an activation a ∈ Rd, denoted Pr(a) ⊆ Rd, is the
connected component of the inverse image of an open ball Br(f(a)) ⊆ Rc of radius r centered at f(a)
such that a ∈ Pr(a).

Figure 1 provides an intuitive sense of an activation plateau. The distance function d of the metric
spaces can be the L2-norm (the Euclidean distance). Note that KL-Divergence cannot be used since
it is not symmetric. Based on this definition, the size of an activation plateau is determined in terms
of how big the radius r of an open ball we consider in the codomain of the network, Rc.

Proposition 3.2 (Disjoint plateaus). If Bra(f(a)) and Brb(f(b)) are disjoint, then Pra(a) and
Prb(b) are also disjoint.

Proof. Proof by contradiction. Suppose Pra(a) ∩ Prb(b) ̸= ∅. Then ∃x ∈ Pra(a) ∩ Prb(b) such that
f(x) ∈ Bra(f(a)) ∩Brb(f(b)). But we know Bra(f(a)) ∩Brb(f(b)) = ∅. ⇒⇐

This is a fairly direct fact in topology. This statement can be extended to infinitely many activation
plateaus and their open balls that are pairwise mutually exclusive.

Additionally, the following is also true.

Proposition 3.3 (Plateau nesting). If r1 < r2, then Pr1(a) ⊆ Pr2(a).
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Figure 1: Diagram of an activation plateau (red). The inverse image of the open ball in the codomain
Br(f(a)) might be connected or disconnected. The connected component of the inverse image that
includes a is the activation plateau of a, denoted Pr(a).

Proof. Let B1 = Br1(f(a)) and B2 = Br2(f(a)). Since B1 ⊂ B2, Pr1(a) ⊆ f−1[B1] ⊆ f−1[B2].
Suppose by contradiction that Pr1(a) ̸⊆ Pr2(a). Then, Pr1(a) ∩ ∁Pr2(a) ̸= ∅. a ∈ Pr1(a) and
a ∈ Pr2(a), so P = Pr1(a) ∪ Pr2(a) is also connected. Note that ∀x ∈ P, f(x) ∈ B2. However, this
contradicts the definition of a connected component that Pr2(a) is a maximal connected subset of
f−1[B2] since we showed that P ⊃ Pr2(a) is the maximal connected component of f−1[B2] containing
a. ⇒⇐

The fact that plateaus are nested depending on the radii of open balls gives rise to an interesting
visualization experiment of the contour lines of an activation plateau, which will be discussed in
Section 4.

Based on the fact that a neural network f is continuous, we can characterize how f “absorbs”
and “pushes” activations by decomposing the neural network into each block gi.

Define gi to be a continuous layer of the neural network f , such as gi(x) = σ(ℓi))(x). Denote a
part of the neural network from layer s to layer t as fs→t(x) = (gt ◦ gt−1 ◦ · · · ◦ gs)(x). Note that
f = f0→n−1. Then, we can consider the following setting:

Remark 3.4. Since gn−1 is continuous, ∀r > 0,∃δn−1 such that ∀xn−1 ∈ Bδn−1
(f0→n−2(a)), g(xn−1) ∈

Br(f(a)). Repeat this process. Since gi is continuous, ∀δi+1 > 0,∃δi > 0 such that ∀xi ∈ Bδi(f0→i−1(a)),
gi(xi) ∈ Bδi+1(f0→i(a)). Reaching layer 0, we eventually get such δ0 > 0 that ∀x0 ∈ Bδ0(a), g0(x0) ∈
Bδ1(f0→1(a)).

Figure 2 visualizes this process.

Figure 2: We consider a residual network f with n = 4 layers. The entire open ball maps to the open
ball in the codomain by continuity. The size of the open ball is a minimum requirement and it is
possible that elements outside the open ball map to within the open ball in the codomain.

By the continuity of each layer, we can prove the following statement:

Proposition 3.5. Such Bδ0(a) is contained in Pr(a).
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Proof. Every point in Bδ0(a) for sure map to an element in Br(f(a)) by continuity, thus Bδ0(a) ⊆
f−1[Br(f(a))]. However, since a ∈ Bδ0(a) and Bδ0(a) is connected, Pr(a) should be the largest
connected subset containing a; Bδ0(a) ⊆ Pr(a).

From this fact, we can say the same thing for any other intermediate layers:

Corollary 3.6. For every i for which 0 ≤ i ≤ n− 1, consider a partial neural network fi→n−1. Then,
such Bδi(f0→i(a)) ⊆ Pr(f0→i(a)).

We note that the radius of the open ball in a domain δi is a minimal requirement, and it is possible
that elements outside the open ball map to within the open ball in the codomain. On the other
hand, once activations in any domain map to a point in the open ball in its codomain,
the activations cannot escape from this dynamics in the sense that they eventually all map to
points in Br(f(a)). Therefore, it makes sense that the more layers we have in between (e.g.,
n layers), the larger the plateau becomes in the domain of the residual network f0→n−1. This
intuition might resonate with the findings of Shinkle and Heimersheim [2025] that the boundaries of
plateaus become sharper as the number of layers in between increases. The whole argument above is
purely based on the fact that f is continuous, and this even applies to a randomly initialized neural
network. Therefore, I will integrate an optimization aspect into this theory, empirically
understanding how this set of trajectories evolves through training checkpoints (to be
discussed in Section 4).

3.2.2 Plateaus in ResNet as a Dynamical System

So far, we have only focused on properties of plateaus of a general neural network f . Now, we pay our
attention to residual networks. Consider a self-mapping residual network f : RD → RD, where interim
residual blocks Fi : RD → RD are also self-maps. Let gi(x) = x+Fi(x) and fs→t(x) = (gt ◦ · · · ◦gs)(x).
(Work in Progress)

4 Experiments

4.1 Research Questions

To summarize, my research questions are:

• Can we create naturalistic plateaus with a toy ResNet?

• What are the datasets/tasks that create plateaus and do not create plateaus in deep toy ResNets?

• How does the geometry of activation plateaus evolve/change over time based on training epoch
and tasks/datasets?

• Do plateaus emerge if you train a fully connected neural network on the same dataset?

4.2 Identifying models, tasks, and datasets that create activation plateaus

To address the questions above, I will follow the following steps to identify effective models that exhibit
plateaus and perform a couple of experiments described in Sections 4.3 and 4.4.

• First, download pretrained ResNets and optionally ViTs from HuggingFace, such as microsoft/resnet-
18, microsoft/resnet-50, microsoft/resnet-101, google/vit-base-patch16-224, and facebook/detr-
resnet-50. Using their trained datasets, examine if each model has activation plateaus. Since
the data passed from one layer to another is a feature map, not a vector, I have to come up
with a clever perturbation method, such as applying local perturbations to some patches, adding
values from random variables that are somewhat correlated. Flattening the feature map into a
vector and discussing trajectories/contour lines might not be reasonable due to the feature de-
pendency/locality in the feature map, but we can still measure the models’ activation plateaus.

• Also, train ResNets of different sizes on other tasks, such as other datasets, symbolic regression,
and function approximation. Similarly, examine if each trained model has activation plateaus. I
can find such tasks from pmlb and srbench (shared by Dr. Shinkle).
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• After identifying tasks/datasets that naturalistically create activation plateaus in the activation
spaces, train a toy ResNet on the selected datasets. Make sure the majority of the interim layers
are all Fℓ : RD → RD. Then we can regard vector additions to the residual stream as actions of
the model and can perform Experiment 4.4.

• Wang and Isola [2022] discovered that contrastive learning settings create representations high
in alignment and uniformity. ResNets are typically trained in supervised settings, not in a self-
supervised way like LLMs. Therefore, it is of interest to examine the representations of ResNets
trained with SimCLR as well (weights can be found here).

• If I could not find any non-CNN-based ResNets that exhibit activation plateaus, I can still
conduct the following experiments to pretrained LLM such as GPT2.

After preparing models that exhibit plateaus, we can perform the following experiments to inves-
tigate how the properties of activation plateaus vary in models of different sizes, tasks/datasets, and
training epochs. To prevent a combinatorial explosion of such parameters, first identify a representa-
tive combination of the model size, training epoch size, and dataset that exhibits the “best” activation
plateau, with which I compare the models of different values of a specific parameter.

4.3 Experiment 1: Contour Line of a Plateau

The idea of this experiment is inspired by Proposition 3.3. An activation plateau contains another
plateau of the same point if open balls are nested in the codomain. Given a residual network, map a
real activation and draw a small open ball around it. We can find a subset of the activation plateau
whose points map to within the ball. If you draw a bigger open ball, the corresponding activation
plateau contains the original one. Therefore, we can plot points in the domain that map to the bigger
open ball but not to within the smaller one. By repeating this process, we can visualize the terrain of
the activation plateau like contour lines.

Figure 3: Contour lines of an activation plateau. The nesting property allows for this visualization of
the plateau terrain.

4.4 Experiment 2: Activation Trajectories

Based on Remark 3.4 and Section 3.2.2, we can also focus on the trajectory of activations in a ResNet
consisting of self-map residual blocks Fi : RD → RD. As a process, simply identify three points in
the domain, two of which are in the same activation plateau and one is outside the plateau. Plot a
set of equidistant points so that those three points are included in the set. At each layer, record the
trajectory of each point and examine if there is something that attracts nearby activations like an
attractor (semantic attractor?). I am also interested in what kind of trajectories points inside and
outside a plateau trace through.

4.5 Experiment 3: Activation Plateaus in Fully-connected Neural Net-
works

Another research question is, can we create plateaus in fully-connected neural networks? Again,
previous research has focused on activation plateaus in LLMs. If we observe that plateaus emerge
in fully-connected networks, these regions turn out to be something more universal than just error
correction through residual block outputs. My speculation is yes, there should be plateaus in their
activation spaces.
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5 Conclusion

In this proposal, I summarized my current thoughts that activation plateaus can be reproduced in
residual networks and that plateaus can be defined analytically. I proved some propositions based
on the definition and designed experiments to visualize the structure of activation plateaus and the
trajectory of activations. I would appreciate any feedback, critiques, and improvements on
any part of this proposal.
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