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Recent studies have revealed that language models encode internal representations of space and time, suggesting
that world models may emerge within the language space during training. In this study, we aim to investigate
whether world models acquire spatiotemporal representations similar to those of language models, and if so, how
and where within their architecture such representations are acquired. Specifically, we examine DreamerV3 to
explore the location and characteristics of neurons encoding meaningful spatiotemporal representations. Using
the “Crafter” benchmark, a task rich in spatiotemporal features, we pre-trained models and performed probing
experiments to evaluate their internal representations. We measure the ability of each model to reconstruct spatial
(e.g., coordinates) and temporal (e.g., timestamps) information using linear probing and analyze the linearity and
distribution of spatiotemporal representations across model layers.

1. Introduction

World models have gained researchers’ interest due to
their training cost-effectiveness in reinforcement learn-
ing, video generation, and high-level modeling of the
decision-making of living systems. In contrast, large
language models (LLMs) demonstrate sophisticated
language reasoning, becoming a landmark of artificial
intellingence development. Some scholarly works have
delved into the internal representations of LLMs us-
ing probing techniques, revealing the emergence of spa-
tiotemporal understanding of the world inside the mod-
els. However, few works have discussed whether and
where world models contain spatiotemporal represen-
tations. Our research examined the presence of such
meaningful features, and, if so, where in the models we
can discover them.

2. Related Research

2.1 Spatiotemporal understanding of language
models

Among studies suggesting a relationship between
world models and language models, Gurnee et al.
demonstrated that LLMs can learn representations
of spatial and temporal information through lan-
guage data about geography and history [Gurnee 23].
By analyzing the internal activations of Llama-2
[Touvron 23] across its layers, they trained linear re-
gression probes that predict the latitude and longitude
of renowned places and the active years of historical
figures. The linear regression probes are expressed
by Equation (1) [Alain and Bengio 16][Belinkov 22].
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These probes produce predictions based on an acti-
vation dataset A and a target dataset Y, which in-
cludes spatial data reflecting geographical information
and temporal data encompassing historical and current
event information.

Ŵ = argmin
W

||Y−AW ||22+λ||W ||22 = (ATA+λI)−1ATY

(1)
The research by Gurnee et al. suggests that spatial
and temporal features can be recovered through the
linear probes, indicating that such information is en-
coded as linear representations. Moreover, the quality
of these learned representations is noted to be signif-
icantly influenced by factors such as model scale and
the volume of training data. However, as the study pri-
marily focuses on LLMs, it does not delve deeply into
the specific connections between LLMs and those world
models that implicitly model the dynamic transition of
states.

2.2 World Models
World models provide a broad framework for captur-

ing implicit representations of external environments
[Ding 24]. The notion of World Models [Ha 18] can
be traced back to research showing that internal neu-
ral network structures can learn to represent environ-
mental dynamics. Building on this foundation, the
Dreamer series introduced powerful model-based rein-
forcement learning techniques, leveraging actor-critic
methods and“ latent imagination”to refine the learn-
ing process. In Dreamer, the agent learns a latent
dynamics model―such as a Recurrent State Space
Model (RSSM)―capable of predicting future states
from compact representations of high-dimensional in-
puts. By generating“ imaginary”trajectories within
latent space, Dreamer trains a policy more efficiently
than purely model-free methods. This approach ef-
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fectively combines actor-critic methods with a learned
world model, enabling the agent to plan and update its
policy based on these imagined rollouts rather than di-
rect interactions with the environment. Each iteration
of the Dreamer series introduced key improvements:
DreamerV1 [Hafner 20] pioneered the RSSM, Dream-
erV2 [Hafner 21] incorporated discrete latent variables,
and subsequent versions added stability measures and
training optimizations. Collectively, the Dreamer se-
ries stands as a prime example of model-based rein-
forcement learning built atop actor-critic principles.

3. Proposed Method

3.1 Learning the world model
In this research, we use DreamerV3 [Hafner 23], the

latest version of the well-established Dreamer model,
as the world model for analyzing spatiotemporal rep-
resentation learning. For the training environment, we
adopt Crafter [Hafner 22], based on the following three
reasons: (1) it allows exploration of relatively large
maps, thereby providing sufficient spatial information;
(2) the episode length, representing the agent’s sur-
vival time, can be effectively utilized as temporal in-
formation; and (3) the computational cost for training
is relatively low.

Figure 1: Example of crafter’s playing screen
[Hafner 23]

3.2 Dataset for probing
Following the methodology of Gurnee et al., in our

experiments, we collected the internal activations of the
deterministic states of Recurrent State Space Model
(RSSM) and stochastic states in DreamerV3 by passing
randomly sampled image vectors from Crafter through
the model [Hafner 19]. The activation data used for
training the probes (A in Equation (1)) is described
in Table 1. Similarly, the target data used for train-
ing (Y in Equation (1)) is detailed in Table 2. The
player’s current position (pos) is represented as a
two-dimensional xy-coordinate, while the elapsed time
(episode) is represented as a scalar.

3.3 Probing
Following the methodology of Gurnee et al., this re-

search also employs the linear probes and nonlinear

Table 1: Number of data for each activation
layer vector count
encoder embedding observation
rssm deterministic state 9712

stochastic state 9712
logits state
policy

decoder embedding observation

Table 2: Number of data for each target

target count
pos 9712
episode 9712

probes described in Section 2.1 to analyze the repre-
sentation of spatiotemporal information. Technically,
we trained RidgeCV and multilayer perceptron (MLP)
probes using the dataset explained in Section 3.2, with
the training data, and then used the test data to eval-
uate the predictions made by the trained probes. For
details on the training settings, refer to Section 3.4, and
for the evaluation methods of the obtained predictions,
refer to Section 3.5.

3.4 Hyperparameters
We used the default hyperparameters of the Dream-

erV3 model to increase the reproducibility of our eval-
uation. The training loop ended with a total step of
16 million. During training, we collected 64 × 64 ob-
servation images, xy positions of the agent in the en-
vironment, and episode count for every 100 steps for
the probing dataset. For training the linear regression
model, we set the regularization parameter α by di-
viding the range 100.8 to 104.1 into 12 equal intervals.
This configuration aligns with the smallest model size,
Llama2-7B, used in the study by Gurnee et al. For
the nonlinear model, we utilized a two-layer MLP with
a hidden layer dimension of 256. For the weight de-
cay of the optimizer, we tested four values―0.01, 0.03,
0.1, and 0.3―and selected the one that yielded the best
performance. In both models, the training and testing
datasets were randomly split at a ratio of 8:2.

3.5 Evaluation
To investigate the spatiotemporal representations

in the pre-trained DreamerV3 model, we trained our
Ridge regression and MLP probes. Our spatial probes
take internal activations as input and predict xy-
coordinates, while temporal probes predict episode
counts from the activations. With reference to the
methodology of Gurnee et al, this investigation will
also evaluate the performance of our investigation by
reporting the decision index R2 and standard regression
indices for the test dataset and discussing the results
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Table 3: Standard regression indices for test data showing the results of probing for spatial information in the linear
regression model at each step

steps activation R2 of X R2 of y R2 MAE of X MAE of y MAE RMSE
1.1 deterministic state -6.5e-4 -5.6e-5 -3.5e-4 8.4 8.6 8.5 11.6

stochastic state 0.21 0.23 0.22 7.3 7.8 7.5 10.3
1.6 deterministic state -5.9e-3 -9.4e-4 -3.4e-3 9.5 9.7 9.6 12.3

stochastic state 0.24 0.23 0.23 8.0 8.2 8.1 10.8

Table 4: Standard regression indices for test data showing the results of probing for spatial information of MLP at
each step

steps activation R2 of X R2 of y R2 MAE RMSE
1.1 deterministic state -1.9e-3 -1.1e-4 -1.0e-3 8.5 11.7

stochastic state 0.22 0.25 0.23 7.4 10.2
1.6 deterministic state -2.4e-3 -7.4e-3 -4.9e-3 9.6 12.3

stochastic state 0.25 0.24 0.24 8.1 10.7

Table 5: Standard regression indices for test data showing the results of probing for time information of MLP at
each step

steps activation R2 MAE RMSE
1.1 deterministic state -4.8e-4 65.9 75.6

stochastic state 3.3e-4 65.8 75.6
1.6 deterministic state -2.3e-3 63.5 73.7

stochastic state -8.9e-4 63.5 73.7

Table 6: Standard regression indices for test data showing the results of probing for time information of MLP at
each step

steps activation R2 MAE RMSE
1.1 deterministic state -3.4e-4 65.9 75.6

stochastic state 5.6e-3 65.4 75.4
1.6 deterministic state -4.5e-3 63.6 73.8

stochastic state -2.6e-2 64.2 74.6
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of this investigation.

4. Experimental Results

Our experimental results are shown in Tables 3 to
6. Overall, our conclusion is that world models fail
to store useful representations that can be consistently
reconstructed by linear or non-linear probes. However,
the result clearly shows that stochastic states succeed
in constructing the linearly consistent spatiotemporal
representation better than deterministic states do. The
R2 scores of stochastic state excel that of deterministic
state, indicating that stochastic states have less vari-
ance in the prediction and successfully contain linear
representation for spatiotemporal understanding com-
pared to the deterministic states. Non-linear probes
also demonstrate a similar results to the linear prob-
ing, nonetheless, MLP succeeded in improving the R2

scores of deterministic states, suggesting that the deter-
ministic states contain spatiotemporal representations
in a non-linear form.

5. Conclusion

In our work, we investigated the nature of spatiotem-
poral representations in world models and used probes
to reconstruct spatiotemporal information from the ac-
tivations obtained through the model to help under-
stand the linearity and non-linearity of such represen-
tations. Our research suggested that while determin-
istic states lack rich linearity, stochastic states contain
more consistent representations that can be decoded
linearly by Ridge regressor models. On the other hand,
the R2 scores of deterministic states increased in the
non-linear probing settings, indicating the complexity
of those representations. Although our work could not
identify meaningful representations stored in the pre-
trained DreamerV3, future research should be done to
investigate how the amount of training impacts the un-
derstanding of spatiotemporal representations and the
linearity and non-linearity of spatiotemporal represen-
tations in other pre-trained world models.
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